Challenge
Enterprise Ruby on Rails applications require comprehensive security assessment frameworks that combine multiple analysis techniques to deliver actionable security insights. Traditional security tools lack systematic integration, automated reporting, and AI-assisted analysis capabilities. Organizations need a framework that demonstrates advanced security engineering methodologies with automated tooling and manual analysis integration.
Solution
Developed a systematic, production-ready framework for evaluating Rails application security using AI-assisted development workflows:
Multi-Modal Assessment: Combines static analysis (SAST), dynamic testing (DAST), and manual code review
Tool Integration: Integrates industry-standard security tools (Brakeman, Bundle Audit, Semgrep, Snyk, ZAP Proxy, Burp Suite)
AI-Assisted Analysis: Leverages AI for pattern recognition, threat modeling, and security analysis
Structured Findings: Categorizes findings according to Rails Security Guide standards
Automated Reporting: Generates comprehensive reports with remediation guidance
CI/CD Integration: Automated security checks in development pipeline
Compliance Validation: Checks against security standards and frameworks
The framework demonstrates advanced security engineering methodologies with automated tooling integration and AI-assisted analysis capabilities.
Code Examples
ETL Pipeline: Orchestrates security tool integration and finding normalization
main.pydef main(dry_run: bool = False, log_level: str = 'INFO') -> None:
"""Main entry point.
Args:
dry_run: Whether to skip writing output
log_level: Logging level to use
"""
setup_logging(log_level)
logger = logging.getLogger('main')
# Set up paths
base_dir = Path(__file__).parent.parent.parent
findings_dir = base_dir / 'findings'
# Load config and schema
config = load_config(str(base_dir / 'scripts' / 'etl' / 'config' / 'parser_configs.yaml'))
schema = load_schema(str(base_dir / 'data' / 'schemas' / 'normalized_finding.json'))
# Process SAST findings
logger.info("Processing SAST findings")
# Bearer
bearer_files = glob.glob(str(findings_dir / 'sast' / 'bearer*.json'))
bearer_parser = BearerParser(config.get('bearer', {}), schema)
for file in bearer_files:
process_file(file, bearer_parser, dry_run, logger)
# Brakeman
brakeman_files = glob.glob(str(findings_dir / 'sast' / 'brakeman*.json'))
brakeman_parser = BrakemanParser(config.get('brakeman', {}), schema)
for file in brakeman_files:
process_file(file, brakeman_parser, dry_run, logger)
# Snyk (chunked)
snyk_parser = SnykParser(config.get('snyk', {}), schema)
snyk_chunks = glob.glob(str(findings_dir / 'sast' / 'snyk-test-chunks' / '*.json'))
for chunk in snyk_chunks:
process_file(chunk, snyk_parser, dry_run, logger)
snyk_code_chunks = glob.glob(str(findings_dir / 'sast' / 'snyk-code-test-chunks' / '*.json'))
for chunk in snyk_code_chunks:
process_file(chunk, snyk_parser, dry_run, logger)
# Process DAST findings
logger.info("Processing DAST findings")
# Nikto
nikto_files = glob.glob(str(findings_dir / 'dast' / 'nikto*.json'))
nikto_parser = NiktoParser(config.get('nikto', {}), schema)
for file in nikto_files:
process_file(file, nikto_parser, dry_run, logger)
# Wapiti
wapiti_files = glob.glob(str(findings_dir / 'dast' / 'wapiti*.json'))
wapiti_parser = WapitiParser(config.get('wapiti', {}), schema)
for file in wapiti_files:
process_file(file, wapiti_parser, dry_run, logger)
# ZAP
zap_files = glob.glob(str(findings_dir / 'dast' / 'zaproxy' / '*.json'))
// ... (truncated) Finding Processor: Normalizes and consolidates security findings across tools
main.pydef process_file(
file_path: str,
parser: Any,
dry_run: bool = False,
logger: Optional[logging.Logger] = None
) -> List[Dict[str, Any]]:
"""Process a single findings file.
Args:
file_path: Path to findings file
parser: Parser instance to use
dry_run: Whether to skip writing output
logger: Logger instance
Returns:
List of normalized findings
"""
if logger is None:
logger = logging.getLogger(__name__)
logger.info(f"Processing {file_path}")
try:
with open(file_path, 'r') as f:
content = json.load(f)
findings = parser.parse(content)
logger.info(f"Found {len(findings)} findings in {file_path}")
if not dry_run and findings:
# Create output directory if needed
output_dir = Path(__file__).parent.parent.parent / 'data' / 'normalized_findings'
os.makedirs(output_dir, exist_ok=True)
# Generate output filename based on input file
input_path = Path(file_path)
tool_name = parser.source_tool if hasattr(parser, 'source_tool') else input_path.stem.split('_')[0]
output_file = output_dir / f"{tool_name}_{input_path.stem}.json"
# Write normalized findings
with open(output_file, 'w') as f:
json.dump(findings, f, indent=2)
logger.info(f"Wrote {len(findings)} findings to {output_file}")
return findings
except Exception as e:
logger.error(f"Failed to process {file_path}: {e}")
if not parser.config.get('skip_on_error', False):
raise
// ... (truncated) Key Metrics
Multi-modal assessment framework (SAST, DAST, Manual Review)
Integration with 6+ industry-standard security tools
AI-assisted analysis for pattern recognition and threat modeling
Automated reporting with structured findings and remediation guidance
Security Impact
Created a comprehensive security assessment framework that provides systematic evaluation of Rails application security through multiple analysis techniques. Built through AI-assisted development workflows, the framework combines automated tooling with manual analysis to deliver actionable security insights. Achieves comprehensive security assessment through structured methodologies. Suitable for security engineers, penetration testers, compliance validation, and enterprise security programs.
Results
Successfully delivered a comprehensive Rails security assessment framework that combines multiple analysis techniques with automated tooling integration. Built through AI-assisted development workflows, the framework provides systematic security evaluation with actionable insights, automated reporting, and compliance validation. Demonstrates advanced security engineering capabilities with tool integration and AI-assisted analysis.